Science and technology education – intentions and reality

Allyson Macdonald
Iceland University of Education
March 2005
Earlier study

• Earlier research 1991-1993
 – *Status and future of science education in compulsory schools in Iceland in the 1990s*
 – funded by the Science Council

• Reports
 – Development of the curriculum
 – Teacher education
 – Materials
 – Science in schools
 – Intentions and realities
Research question

• This follow-up study will address the following key research question:
 – What is the nature of the gap between the intended curriculum and the actual curriculum – the intentions and the reality?

• Subsidiary questions include:
 – What are the main features of the national curriculum in science in Iceland from 1999?
 – What resources are available for science teaching and learning (particularly ICT) and what is their role?
 – What learning and teaching practices are typically found in schools?
 – What influences student choice with regard to science and technology in secondary, further and/or higher education?

• Funded by the Research Fund and by KHÍ
Project group

- **Project leader**
 - Allyson Macdonald, science/physics education, curriculum and evaluation studies

- **Project researchers**
 - Meyvant Þórolfsson, M.Ed., curriculum and evaluation specialist, doctoral student
 - Kristján Ketill Stefánsson, B.Ed., master’s student
 - Björg Petursdóttir, M.S., master’s student
 - Elín Bergmann Kristmansdóttir, B.Ed., master’s student

- **Associates**
 - Sif Einarsdóttir, guidance counsellor
 - Hafþór Guðjónsson, chemistry education/teacher education
 - Hrefna Sigurjónsdóttir, biology education (HS)
 - Eggert Lárusson, geology/geography education
 - Haukur Arason, physics education
 - Hrefna Sigurjónsdóttir, chairman of teaching committee, biology education
 - Stefan Bergmann, graduate studies in biology, biology/environmental education
Methodology

• Mixed methods
 – interviews
 – questionnaires
 – observations
 – statistical surveys
 – textual analysis
Theory

• Curriculum theory
 – official and recontextualised discourse, classification and framing (Bernstein)
 – deliberation: decision-making (Reid)

• Cultural-historical activity theory theory CHAT (Engeström)

• Learning – self-efficacy, engagement, demands
What are the main features of the national curriculum in science?

- Analysis of the curriculum as a text
- Analysis of the curriculum as policy
 - Views of science and technology
 - Views of education
- Comparison with Sweden and Denmark
- School curriculum
What resources are available for science teaching and learning (particularly ICT) and what is their role?

- Review of resources
 - availability and nature of printed materials
 - ICT resources – language and software/hardware
 - other resources inside and outside the classroom
- Views of teachers
 - on the role of materials in teaching and learning
- Relationship to the national curriculum
- Relationship to conditions in schools
What learning and teaching practices are typically found in schools?

• The school curriculum
 – the (official) school curriculum
 – teaching plans

• Observations
 – of classroom situations
 – of other types of learning situations
 – of teacher activity and learner activity

• School self-evaluation (SCIQ) – intrinsic and extrinsic factors
What influences student choice with regard to science and technology in secondary, further and/or higher education?

- Listening to students
 - interest, engagement, predisposition
 - risk and protective factors
- Interest inventory
- PISA studies – definition of scientific literacy
- Patterns of enrollment and choice
- Images of science and technology
What is the nature of the gap between the intended curriculum and the actual curriculum – the intentions and the reality?

- **Intentions**
 - what kind of science and technology is promoted in official discourse?
 - what is the (stated) purpose of science and technology education?
 - what kind of society is reflected in this discourse?

- **Reality**
 - what kind of learning is encouraged in society?
 - what kind of science learning is encouraged in schools/classrooms and at an individual level?
 - what choices are available?
 - what do students learn?